GDNF Selectively Induces Microglial Activation and Neuronal Survival in CA1/CA3 Hippocampal Regions Exposed to NMDA Insult through Ret/ERK Signalling
نویسندگان
چکیده
The glial cell line-derived neurotrophic factor (GDNF) is a potent survival factor for several neuronal populations in different brain regions, including the hippocampus. However, no information is available on the: (1) hippocampal subregions involved in the GDNF-neuroprotective actions upon excitotoxicity, (2) identity of GDNF-responsive hippocampal cells, (3) transduction pathways involved in the GDNF-mediated neuroprotection in the hippocampus. We addressed these questions in organotypic hippocampal slices exposed to GDNF in presence of N-methyl-D-aspartate (NMDA) by immunoblotting, immunohistochemistry, and confocal analysis. In hippocampal slices GDNF acts through the activation of the tyrosine kinase receptor, Ret, without involving the NCAM-mediated pathway. Both Ret and ERK phosphorylation mainly occurred in the CA3 region where the two activated proteins co-localized. GDNF protected in a greater extent CA3 rather than CA1 following NMDA exposure. This neuroprotective effect targeted preferentially neurons, as assessed by NeuN staining. GDNF neuroprotection was associated with a significant increase of Ret phosphorylation in both CA3 and CA1. Interestingly, confocal images revealed that upon NMDA exposure, Ret activation occurred in microglial cells in the CA3 and CA1 following GDNF exposure. Collectively, this study shows that CA3 and CA1 hippocampal regions are highly responsive to GDNF-induced Ret activation and neuroprotection, and suggest that, upon excitotoxicity, such neuroprotection involves a GDNF modulation of microglial cell activity.
منابع مشابه
NMDA receptors and the differential ischemic vulnerability of hippocampal neurons.
Transient cerebral ischemia causes an inhomogeneous pattern of cell death in the brain. We investigated mechanisms, which may underlie the greater susceptibility of hippocampal CA1 vs. CA3 pyramidal cells to ischemic insult. Using an in vitro oxygen-glucose deprivation (OGD) model of ischemia, we found that N-methyl-D-aspartate (NMDA) responses were enhanced in the more susceptible CA1 pyramida...
متن کاملThe effect of Gallic acid on prenatal entorhinal cortex and CA1/CA3 hippocampal areas in trimethyltin intoxication rat
Background: Prenatal intoxication with trimethyletin (TMT) induces widespread neuronal death in the central nervous system by inducing oxidative stress. The aim of this study was to evaluate the antioxidant effect of gallic acid (GA) on the neuronal density of the entorhinal cortex, hippocampal pyramidal cells and oxidative stress parameters in the fetal forebrain following TMT intoxication. ...
متن کاملThe regional vulnerability to hypoglycemia-induced neurotoxicity in organotypic hippocampal culture: protection by early tetrodotoxin or delayed MK-801.
Profound hypoglycemia selectively damages CA1 and the dentate gyrus of the hippocampus. We have examined the time course of hippocampal neuronal injury in organotypic cultures following in vitro "hypoglycemia," using the fluorescent vital dye propidium iodide to observe directly the regional distribution of early neuronal membrane injury in living cultures. The in vivo hippocampal pattern of hy...
متن کاملRet-dependent and -independent mechanisms of glial cell line-derived neurotrophic factor signaling in neuronal cells.
Glial cell line-derived neurotrophic factor (GDNF) has been shown to signal through a multicomponent receptor complex consisting of the Ret receptor tyrosine kinase and a member of the GFRalpha family of glycosylphosphatidylinositol-anchored receptors. In the current model of GDNF signaling, Ret delivers the intracellular signal but cannot bind ligand on its own, while GFRalphas bind ligand but...
متن کاملLead exposure impairs the NMDA agonist-induced NOS expression in pyramidal hippocampal cells
Chronic exposure to lead (Pb) affects neural functions in central nervous system (CNS) particularly the learning and memory. On the other hand, alteration of calcium level in the CNS results in activation of NOS. It has been shown that lead enters the neurons through calcium channels and displaces Ca2+ from calcium binding proteins such as calmodulin and troponin C thereby affecting calcium-med...
متن کامل